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Abstract: Furan ring in 3-alkyl-4-(2-furyl)-4--oxobulanenilriles is completely oxidized by the RuCJ3-KIO4 
couple to efficiently afford, aRer esterificalion, methyl 2-alkyl-3-cyanopropanoales in good yields. 
© 1997 Elsevier Science Ltd. 

The direct introduction of alkyl frameworks at 2 position of alkanoic acids and esters is nowdays a well 

established procedure, that is usually carried out by a simple alkylation of ester enolates.l However, the search 

for alternative approaches directed towards the synthesis of 2-functionalized acids and derivatives is still a matter 

of interest, expecially when chemoselectivity problems must be overcome. Recenly we have reported that direct 

substitution of the phenylsulfonyl group is observed during the reaction of Grignard reagents with 3- 

phenylsulfonyl-4-oxoarenebutanenitriles in the presence of lithium perchlorate (eq. I).2 

1. RMgX, LiCIO4 
Et20-C0-1s (1:5) 

Ar N • Ar N 
SO2Ph 2. NH4CI std R 

1 2 

(1) 

The reaction is conducted at room temperature in a diethyl ether-benzene mixture (1:5) and primary, 

secondary and functionalized magnesium reagents can be used for this procedure. Although the cyano group is 

unaffected by these conditions, a substantial lack of reactivity is observed when the aryl group in ketonitriles 1 is 

substituted by alkyl or alkoxy groups. In order to circumvent this drawback, we decided to exploit other 

heteroaromatic systems that could conserve good reactivity, but act as precursors for other useful functionalities. 

In this context, the furan ring has shown a wide array of cleavage opportunities 3 and therefore we have focused 

our attention on its utilisation. 3-Phenylsulfonyl-4-(2-furyl)-4-oxobutanenitrile 5 was prepared using standard 

conditions (Scheme 1) and treated with different Grignard reagents in the presence of 1 equivalent of lithium 

perchlorate in a ether-benzene mixture (1:5) at room temperature (eq. 2). 
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S c h e m e  I : (a) Br 2 , dioxane-ether, 20=C, 82=/.; (b) PhSO2Na, DMF, 20°C, 90=1.; 
(c) Nail, BrCH2CN, THF, 20=C, 800 

1. RMgX, LiCIO4 
O --N Et20-CsHs (1:5), O 

2. NH4CI std 

5 6 

(2) 

The results (Table), show that the furan ring shows an equivalent ability to the other benzene moieties to favour 

the substitution process of the phenylsulfonyl group by organomagnesium reagents. 4 

Ruthenium tetroxide is a powerful oxidizing reagent, and is capable of a complete demolition of aromatic 

rings affording carboxylic acids. 5 The fumn nucleus is particularly oxidizable by ruthenium tetroxide, and this 

procedure has been profitably used on chiral 2-furylcarbinols that can thus be converted into 2-hydroxy 

carboxylic acids (eq. 3). 6 
[RuO,] . ~  

R ,. R 
ref.6 OH (3) 

OR' OR' 

3-Alkyl-4(2-furyl)-4--oxobutanenitriles 6 hexhibit a peculiar and previously unobserved behaviour towards 

oxidation with ruthenium tetroxide. In this case the carbon skeleton of the furan ring is completely removed 

under these oxidative conditions, affording the corresponding 2-alkyl-3-cyanopropanoic acids 7 (Scheme 2). 

a H O  b 
6 , " HO N " MeO N 

u R R 

7 8 

S c h e m e  2 : (a) 3% RuCI3 3H20, 8 equiv. KIO4, CH3CN-CH2CI2-H20 (2;2:3), 20°C; 
(b) MeOH, Amberlyst 15, 20°C. 

A possible intermediate in this cleavage pathway is the corresponding a-ketoacid that is further oxidised to the 

acid 7. 7 Furylketonitriles 6 have been oxidised using 3% tool. ruthenium trichloride as catalyst together with 

varying amounts of potassium periodate 8 depending on the substrate (Table). The original solvent system 

(carbon tetrachloride, acetonitrile,water in a ratio 2:2:3) 5b has been sightly modified replacing carbon 

tetrachloride with dichloromethane and this gives better results in several cases. 9 
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Table. Reaction between furylketonitrile 5 with Grignard reagents in Et20-C6H6 (1:5) in the presence of 

LiCIO4, followed by oxidation with RuCI3/KIO4 couple and methyl esterification. 

Entry RMgX Substitulion yield (%) Oxidation Equiv. KIO4 yield (%) 
Product Product 

1 r~uMgCI 6a 75 8a 8 73 

2 EtMgBr 61) 68 81) 9 70 

3 MeMgCI 6o 72 8c 11 68 

4 sBuMgBr 6¢1 74 8d 7 77 

5 1-C6H13MgBr 6e 78 84) 8 80 

6 2-C5H1 1MgCI 6l 68 8l 11 70 

7 cCsH11MgBr 6g 70 8g 12 66 

8 BnO(CH2)4MgBr 611 78 811 10 72 

9 Me3SiCH2MgCI 6 1 75 8 i 8 77 

Unfortunately, this oxidative procedure is not effective with arylketonitriles of type 1 since the presence of a 

carbonyl group with its electron withdrawing character, has a deleterious effect on the oxidation. 5a,6c Conversely, 

the furan ring is oxidised even in the presence of an adjacent carbonyl group, probably because of its electron 

rich nature. When short chain (methyl, ethyl) alkyl groups are introduced by the organomagnesium reagent, the 

corresponding acids 7 are often too soluble in water to be efficiently isolated. Therefore, carboxylic acids 7 were 

directly converted into methyl esters using Amberlyst 15 ion exchange resin in methanol. 10 The three step 

procedure (5 to 8) ultimately represents an efficient entry to 2-alkyl-3-cyanopropanoates and allow 

circumvention of the reduced reactivity of the corresponding 2-phenylsulfonyl derivatives 1. The capability of the 

ester group to be converted into an aldehyde using different reducing agents greatly expands the synthetic 

significance of the present procedure. In this context it is worth noting that the ester group can be reduced to the 

aldehyde function with surprising chemoselectivity using DIBAL-H as a reducing agent despite the known 

sensibility of the cyano group to this reagent (eq. 4) .l] 

6o 

0 
I I  

1. DIBAL-H, toluene -78°C 
• H ----N 

2. HCI 0.5N 
9 (86%) 

(4) 

In conclusion, we have devised an easy and efficient entry to methyl 2-alkyl-3-cyanopropanoates 8 by 

means of a substitution-oxidation procedure starting from 3-phenylsulfonyl-4-(2-furyl)-4-oxobutanenitrile $12 

Although some esters 8 may be prepared by conventional methods 13 this procedure represents an alternative 

route to their synthesis. Further investigations on the mechanism and synthetic potentialities of this procedure 
are in progress in our laboratory. 
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